If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+16X-61=0
a = 1; b = 16; c = -61;
Δ = b2-4ac
Δ = 162-4·1·(-61)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-10\sqrt{5}}{2*1}=\frac{-16-10\sqrt{5}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+10\sqrt{5}}{2*1}=\frac{-16+10\sqrt{5}}{2} $
| 4=v6.4 | | 2=k-91/4 | | 8b=6.5 | | x/2.7=4 | | v/9=81 | | x=+4-6x=6-5x-2 | | k2=-13 | | x^2+52=20 | | 4/d=5/10 | | -f+-64=34 | | x3−x5=2 | | -9(m+41)=-9 | | 1/2y-4=1/5y | | 2x=25+3x3x-6 | | 7b+11=81 | | -6(2x+3)=-12-18 | | g4− –8=11 | | 6(c+6)=42 | | c+(-5)=23 | | 27+2y=53 | | r–=7/81 | | -55=8w-7 | | h-(-8.6)=-46.5 | | 12.4+f=23.01= | | 231+x=360 | | h/7=24 | | x/9-1=12 | | h/5+15=23 | | y/21=31 | | -2x=-5=7 | | x-21.3=1.3 | | 2x+55=95 |